White Lab Publications


154. Structure of the Saccharolobus solfataricus type III-D CRISPR effector Cannone G, Kompaniiets D, Graham S, White MF and Spagnolo L (2022) bioRxiv 2022.11.14.516469; doi:

153. Antiviral signaling by a cyclic nucleotide activated CRISPR protease Rouillon C, Schneberger N, Chi H, Blumenstock K, DaVela S, Ackermann K, Moecking J, Peter MF, Boenigk W, Seifert R, Bode B, Schmid-Burgk JL, Svergun D, Geyer M, White MF and Hagelueken G. (2022) Nature in press.

152. Structure and Mechanism of the type I-G CRISPR effector Shangguan Q, Graham S, Sundaramoorthy R and White MF (2022) Nucl Acids Res gkac925.

151. Cyclic nucleotide-induced superhelical structure activates a TIR immune effector Hogrel G, Guild A, Rickman H, Grüschow S, Bertrand Q, Graham S, Spagnolo L and White MF (2022) Nature 608, 808-812.

150. Cyclic Nucleotide Signalling in Phage Defense and Counter-Defense Athukoralage JS and White MF (2022) Ann Rev Virology 9, 451-468


149. Specificity and sensitivity of an RNA targeting type III CRISPR complex coupled with a NucC endonuclease effector. Grüschow S, Adamson CS and White MF (2021) Nucleic Acids Res, 49, 13122-13134.

148. Cyclic oligoadenylate signalling and regulation by ring nucleases during type III CRISPR defence Athukoralage JS and White MF RNA rna.078739.121.

147.  The CRISPR ancillary effector Can2 is a dual-specificity nuclease potentiating type III CRISPR defence Zhu W, McQuarrie S, Grüschow S, Graham S, Gloster TM* and White MF* Nucleic Acids Res, 49, 2777-2789.


146. Bacteria SAVED from viruses White MF (2020) Cell 182, 5-6.

145. Tetramerisation of the CRISPR ring nuclease Crn3/Csx3 facilitates cyclic oligoadenylate cleavage Athukoralage JS, McQuarrie S, Grüschow S, Graham S, Gloster TM and White MF (2020) eLife 9:e57627.

144. Facile and scalable expression and purification of Transcription factor IIH (TFIIH) Core complex Sanles-Falagan R, Petrovic-Stojanovska B and White MF (2020) Prot Expr Purif 174, 105660.

143. Fuse to defuse: a self-limiting ribonuclease-ring nuclease fusion for type III CRISPR defence Samolygo A, Athukoralage JS, Graham S and White MF (2020) Nucleic Acids Res, gkaa298.

142. The dynamic interplay of host and viral enzymes in type III CRISPR-mediated cyclic nucleotide signalling Athukoralage JS, Graham S, Rouillon C, Grüschow S and White MF (2020) eLife, 9:e55852.

141. Regulation of the RNA and DNA nuclease activities required for Pyrococcus furiosus Type III-B CRISPR-Cas Immunity Foster K, Grüschow S, Bailey S, White MF and Terns M (2020) Nucleic Acids Res, gkaa176.

140. Structure and mechanism of a Type III CRISPR defence DNA nuclease activated by cyclic oligoadenylate Zhu W, Graham S, Rambo R, White MF* and Gloster TM* (2020) Nat Commun. 11(1):500. * joint corresponding authors.

139. A viral anti-CRISPR subverts type III CRISPR immunity by rapid degradation of cyclic oligoadenylateAthukoralage JS, MacMahon SA, Zhang C, Grüschow S, Graham S, Krupovic M, Whitaker RJ, Goster TM* and White MF* (2020) Nature * joint corresponding authors.


138. Evolutionary classification of CRISPR-Cas systems 2019: explosion of Class 2 and derived variants Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, Charpentier E, Cheng D, Haft DH, Horvath P, Moineau S, Mojica FJM, Scott D, Shah SA, Siksnys V, Terns MA, Venclovas C, White MF, Yakunin AF, Yan W, Zhang F, Garrett RA, Backofen R2, Oost JvD, Barrangou R, Koonin EV (2019) Nat Rev Microbiol doi: 10.1038/s41579-019-0299-x

137. Asymmetric base pair opening drives helicase unwinding dynamics Colizzi F, Perez-Gonzalez C, Fritzen R, Levy Y, White MF, Penedo JC and Bussi G (2019) PNAS 116 (45), 22471-22477.

136. Cyclic oligoadenylate signalling mediates Mycobacterium tuberculosis CRISPR defence Grüschow S, Athukoralage JS, Graham S, Hoogeboom T and White MF (2019) Nucleic Acids Res 47 (17), 9259-9270.

135. A type III CRISPR ancillary ribonuclease degrades its cyclic oligoadenylate activator Athukoralage JS, Graham S, Grüschow S, Rouillon C and White MF (2019) J Mol Biol 431 (25), 2894-2899.

134. Investigation of the cyclic oligoadenylate signalling pathway of type III CRISPR systems Rouillon C, Athukoralage JS, Graham S, Grüschow S and White MF (2019) In: Methods in Enzymology; 616:191-218. Ed. Baily S.


133. Ring nucleases degrade cyclic oligoadenylates in a type III CRISPR system Athukoralage JS, Rouillon C, Graham S, Grüschow S and White MF (2018) Nature

132. Control of cyclic oligoadenylate synthesis in a type III CRISPR system Rouillon C, Athukoralage JS, Graham S, Grüschow S and White MF (2018) eLife 7:e36734.

131. DNA repair in the Archaea – an emerging picture White MF and Allers T (2018) FEMS Microbiol Rev 42, 514-526.

130. Prespacer processing and specific integration in a Type I-A CRISPR system Rollie C, Graham S, Rouillon C and White MF (2018) Nucleic Acids Res 46, 1007-1020. (designated “Breakthrough Article” top 3%).


129.DNA-interacting characteristics of the archaeal rudiviral protein SIRV2_Gp1 Peeters E, Boon M, Rollie C, Willaert RG, Voet M, White MF, Prangishvili D, Lavigne R and Quax TEF (2017) Viruses 9, 190.

128. High affinity RNA binding by a hyperthermophilic single-stranded DNA binding protein Morten MJ, Gamsjaeger R, Cubeddu L, Kariawasam R, Peregrina J, Penedo JC and White MF (2017) Extremophiles 21, 369-379.

127. A type III-B CRISPR-Cas effector complex mediating massive target DNA destruction. Han W, Li Y, Deng L, Feng M, Peng W, Hallstrøm S, Zhang J, Peng N, Liang YX, White MF and She Q. (2017) Nucleic Acids Res 45, 1983-1993.


126. Cpf1 shape-shifts for streamlined CRISPR cleavage White MF (2016) Nat Struct Mol Biol 23, 365-366.

125. Mechanism of DNA loading by the DNA Repair helicase XPD Constantinescu Aruxandei D, Petrovic-Stojanovska B, Penedo JC, White MF* and Naismith JH* (2016) Nucleic Acids Res 44, 2806-2815. * joint corresponding authors.

124. Multiple nucleic acid cleavage modes in divergent type III CRISPR systems Zhang J, Graham S, Tello A, Liu H and White MF (2016) Nucleic Acids Res 44, 1789-1799.


123. Taking a molecular motor for a spin: helicase mechanism studied by spin labelling and PELDOR Constantinescu Aruxandei D, Petrovic-Stojanovska B, Schiemann O, Naismith JH* and White MF*(2016) Nucleic Acids Res 44, 954-968 * joint corresponding authors.

122. Binding dynamics of a monomeric SSB protein to DNA: a single-molecule multi-process approach Morten M, Peregrina J, Figueira M, Ackermann K, Bode B, White MF* and Penedo JC*(2015) Nucleic Acids Res 43, 10907-10924 * joint corresponding authors.

121. An updated evolutionary classification of CRISPR-Cas systems Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJJ, Charpentier E, Haft DH, Horvath P, Moineau S, Mojica FJM, Terns RM, Terns MP, White MF, Yakunin AF, Garrett RA, van der Oost J, Backofen R and Koonin EV (2015) Nature Reviews Microbiology doi:10.1038/nrmicro3569.

120.  Intrinsic sequence specificity of the Cas1 integrase directs new spacer acquisition Rollie C, Schneider S, Brinkmann AS, Bolt EL and White MF (2015) eLife 10.755/eLife.08716.

119. Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity Charpentier E, Richter H, van der Oost J and White MF (2015) FEMS Microbiol Rev 39, 428-441.

118. Functional characterization of a conserved archaeal viral operon revealing single-stranded DNA binding, annealing and nuclease activities. Guo Y, Kragelund BB, White MF and Peng X (2015) J Mol Biol 427, 2179-91.

117. The structural basis of DNA binding by the single stranded DNA binding protein from Sulfolobus solfataricus Gamsjaeger R, Kariawasam R, Gimenez AX, Touma C, McIlwain E, Bernardo RE, Shepherd NE, Ataide SF, Dong Q, Richard DJ, White MF and Cubeddu L (2015) Biochemical Journal 465, 337-346.


116. Crystal “unengineering”: reducing the crystallisability of Sulfolobus solfataricus Hjc Middleton C, Parker J, Knott G, White MF and Bond C (2014) Australian Journal of Chemistry 67, 1818-1823.

115. Cas6 specificity and CRISPR RNA loading in a complex CRISPR-Cas system Sokolowski RD, Graham S and White MF (2014) Nucleic Acids Res. 42, 6532-41.

114. Protein-protein interactions leading to the recruitment of the host DNA sliding clamp by the hyperthermophilic archaeal virus SIRV2. Gardner AF, Bell SD, White MF, Prangishvili D and Krupovic M (2014) J. Virol. 88, 7105-08.

113. CRISPR-mediated targeted mRNA degradation in the archaeon Sulfolobus solfataricus. Zebec Z, Manica A, Zhang J, White MF and Schleper C (2014) Nucleic Acids Res. 42, 5280-88.

112. Single-molecule characterization of Fen1 and Fen1/PCNA complexes acting on flap substrates. Craggs T, Hutton RD, Brenlla AA, White MF* and Penedo JC* (2014) Nucleic Acids Res. 42, 1857-1872. * joint corresponding authors.


111. Hot and crispy: CRISPR-Cas systems in the hyperthermophile Sulfolobus solfataricus Zhang J and White MF (2013) Biochem. Soc. Trans. 41, 1422-1426.

110. Structure of the CRISPR Interference Complex CSM reveals key similarities with Cascade Rouillon C, Zhou M, Zhang J, Politis A, Beilsten-Edmands V, Cannone G, Graham S, Robinson CV, Spagnolo L and White MF (2013) Mol. Cell 52, 124-134.

109. Backbone and side-chain 1H, 13C and 15N resonance assignments of the OB domain of the single stranded DNA binding protein from Sulfolobus solfataricus and chemical shift mapping of the DNA-binding interface. Gamsjaeger R, Kariawasam R, Touma C, Kwan AH, White MF, Cubeddu L. (2013) Biomol NMR Assign. in press.

108. CRISPR Interference – a structural perspective Reeks J, Naismith JH and White MF (2013) Biochemical Journal, 453, 155-166.

107. Structure of a dimeric crenarchaeal Cas6 enzyme with an atypical active site for CRISPR RNA processing Reeks J, Sokolowski RD, Graham S, Liu H, Naismith JH and White MF (2013) Biochemical Journal, 452, 223-230. PMID: 23527601

106. Structure of the archaeal Cascade subunit Csa5: relating the small subunits of CRISPR effector complexes Reeks J, Graham S, Anderson L, Liu H, White MF* and Naismith JH* (2013) RNA Biology 10:5, 1-8 * joint corresponding authors.

105.Crenarchaeal chromatin proteins Cren7 and Sul7 compact DNA by inducing rigid bends Driessen RP, Meng H, Suresh G, Shahapure R, Lanzani G, Priyakumar U, White MF, Schiessel H, van Noort J and Dame RT. (2013) Nucl. Acids Res. 41, 196-205.


104. Alba shapes the archaeal genome using a delicate balance of bridging and stiffening the DNA Laurens N, Driessen RP, Heller I, Vorselen D, Noom MC, Hol FJ, White MF, Dame RT and Wuite GJ(2012) Nature Communications 3:1328. doi: 10.1038/ncomms2330.

103. The CRISPR associated protein Cas4 is a 5′ to 3′ DNA exonuclease with an iron-sulfur cluster Zhang J, Kasciukovic T and White MF (2012) PLoS One, 7(10): e47232. doi:10.1371/journal.pone.0047232.

102. Protein-induced changes in DNA structure and dynamics observed with noncovalent site-directed spin labeling and PELDOR Reginsson GW, Shelke SA, Rouillon C, White MF, Sigurdsson ST & Schiemann O (2012) Nucl. Acids Res. PMID: 22941643

101. Staphylococcus aureus DinG, a helicase that has evolved into a nuclease McRobbie A-M, Meyer B, Rouillon C, Petrovic-Stojanovska B, Liu H and White MF (2012) Biochemical Journal, 442, 77-84. PMID: 22166102

100. Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunityZhang J, Rouillon C, Kerou M, Reeks J, Brugger K, Graham S, Reimann J, Cannone G, Liu H, Albers SV, Naismith JH, Spagnolo L and White MF (2012), Mol Cell, 45, 303-313. PMID: 22227115.

99. Iron-sulphur clusters in Nucleic Acid Processing Enzymes White MF and Dillingham MS (2012), Curr Opin Struct Biol, 22, 94-100. PMID: 22169085.

98. Postcards from the Edge: Structural Genomics of Archaeal Viruses Krupovic M, White MF, Forterre P and Prangishvili D (2012), Advances in Virus Research, 82, 33-62.

97. Displacement of the canonical single stranded DNA binding protein in the thermoprotealesPaytubi S, McMahon SA, Graham S, Liu H, Botting CH, Makarova KS, Koonin EV, Naismith JH and White MF (2011) Proc. Natl. Acad. Sci. USA, 109, E398-405. PMID: 22106294.


96. Structural and functional characterization of an archaeal CASCADE complex for CRISPR-mediated viral defense Lintner NG, Kerou M, Brumfield SK, Graham S, Liu H, Naismith JH, Sdano M, Peng N, She Q, Copie V, Young MJ, White MF* and Lawrence CM* (2011) J. Biol. Chem. 286, 21643-21656.* joint corresponding authors

95. hSSB1 interacts directly with the MRN complex stimulating its recruitment to DNA double strand breaks and its endo-nuclease activity. Richard D, Cubeddu L, Urquhart A, Bain A, Bolderson E, Menon D, White MF, Khanna K. (2011)Nucleic Acids Res. 39, 3643-3651.

94. hSSB1 rapidly binds at the sites of DNA double strand breaks and is required for the efficient recruitment of the MRN complex Richard D, Savage K, Bolderson E, Cubeddu L, So S, Ghita M, Chen D, White MF, Prise K, Schettino G and Khanna KK (2011) Nucleic Acids Res. 39, 1692-1702.

93. Recognition of archaeal CRISPR RNA: No P in the alindromic repeat? (2011) Structure 19, 142-144.

92. Homologous Recombination in the archaea: the means justify the ends White MF (2011) Biochem. Soc. Trans. 39, 15-19.

91. A dimeric Rep protein initiates replication of a linear archaeal virus genome: implications for Rep mechanism and viral replication Oke M, Kerou M, Liu H, Peng X, Garret RA, Prangishvili D, Naismith JH and White MF (2011) J. Virol. 85, 925-931.

90.The evolution and mechanisms of Nucleotide Excision Repair proteins Rouillon, C and White MF (2011) Research in Microbiology 162, 19-26.


89.Extensive lysine methylation in hyperthermophilic crenarchaea: potential implications for protein stability and recombinant enzymes Botting CH, Talbot P, Paytubi S and White MF (2010) Archaea Article ID 106341, doi:10.1155/2010/106341

88. The Scottish Structural Proteomics Facility: targets, methods and outputs Oke M, Carter LG, Johnson KA, Liu H, McMahon SA, … White MF and Naismith JH (2010) J. Struct. Func. Genomics 11, 167-180.

87. The XPB-Bax1 helicase-nuclease complex unwinds and cleaves DNA substrates: implications for eukaryal and archaeal Nucleotide Excision Repair Rouillon C and White MF (2010) J. Biol. Chem. 285, 11013-11022.

86. Dimer:dimer stacking Interactions are important for nucleic acid binding by the archaeal chromatin protein Alba Jelinska C, Petrovic-Stojanovska B, Ingledew WJ and White MF (2010), Biochemical Journal 427, 49-55.

85. XPF and PCNA cooperate to distort DNA substrates Hutton RD, Craggs T, White MF* and Penedo JC* (2010) Nucleic Acids Res. 38, 1664-1675.* joint corresponding authors

84.The DNA repair helicase XPD unwinds bubble structures and is not stalled by extrahelical DNA lesions Rudolf J, Rouillon C, Schwarz-Linek U and White MF (2010) Nucleic Acids Res. 38, 931-941.


83. Structure, function and evolution of the XPD family of iron-sulfur-containing 5′-3′ DNA helicases White MF (2009) Biochem. Soc. Trans. 37, 547-551.

82. The crenarchaeal DNA damage inducible transcription factor B paralogue TFB3 is a general activator of transcription Paytubi S and White MF (2009) Mol. Microbiol. 72, 1487-1499.

81. Structural and functional characterisation of a conserved archaeal RadA paralog with antirecombinase activity McRobbie A-M, Carter LG, Kerou M, Liu H, McMahon SA, Johnson KA, Oke M, Naismith JH and White MF (2009) J. Mol. Biol. 389, 661-673.

80.Structure and function of AcsD, a new class of adenylating enzyme that catalyzes citrate desymmetrization in pathogenicity-conferring siderophore biosynthesis Schmelz, S, Kadi, N, McMahon, SA, Song L, Oves-Costales D, Oke M, Liu H, Johnson KA, Carter L, Botting CH, White MF, Challis GL and Naismith JH (2009) Nature Chem. Biol. 5, 174-182.

79. DNA Damage: from Causes to Cures Bowater RP, Borts RH and White MF (2009) Biochem. Soc. Trans. 37, 479-481.

78. RecA family proteins in archaea: RadA and its cousins Handenby S, White MF and Allers T (2009) Biochem Soc Trans 37, 102-107.

77.Reactions to UV damage in the model archaeon Sulfolobus solfataricus Fröls S, White MF and Schleper C (2009) Biochem Soc Trans 37, 36-41.


76. Purification, crystallization and data collection of Pectobacterium chrysanthemi AcsD, a type A siderophore synthetase McMahon SA, Oke, M, Liu H, Johnson KA, Carter L, Kadi N, White MF, Challis GL and Naismith JH (2008) Acta Crystallogr Sect F Struct Biol Cryst Commun. 1;64, 1052-1055.

75. The Major Architects of Chromatin: Architectural proteins in bacteria, archaea and eukaryotes Luijsterburg MS, White MF, van Driel R and Th. Dame, R (2008) Critical Reviews in Biochemistry and Molecular Biology 43, 1-26.

74. PCNAstimulates catalysis by structure specific nucleases using two distinct mechanisms: substrate targeting and catalytic step Hutton, RD, Roberts JA, Penedo JC and White MF (2008) Nucleic Acids Res. 36, 6720-6727.

73. Unusual chromophore and cross-links in Ranasmurfin: a blue protein from the foam nests of a tropical frog Oke, M, Ching RT, Carter LG, Johnson, KA, Liu H, McMahon SA, White MF, Bloch C Jr, Botting CH, Walsh, MA, Latiff AA, Kennedy MW, Cooper A and Naismith JH (2008) Angew Chem Int Ed Engl. 47, 7853-7856.

72. Structure of the DNA repair helicase XPDLiu H, Rudolf, J, Johnson KA, McMahon SA, Oke M, Carter L, McRobbie A-M, Brown SE, Naismith JH and White MF. (2008) Cell, 133, 801-812.

71. Single-stranded DNA-binding protein hSSB1 is critical for genomic stability Richard DJ, Bolderson E, Cubeddu L, Wadsworth RIM, Savage K, Sharma GG, Nicolette ML, Tsvetanov S, McIlwraith MJ, Pandita RK, Takeda S, Hay RT, Gautier J, Paull TT, Pandita TK, White MF and Khanna, KK (2008) Nature 453, 677-682.

70. TarO: a target optimisation system for structural biologyOverton IM, van Niekerk CA, Carter LG, Dawson A, Martin DM, Cameron S, McMahon SA, White MF, Hunter WN, Naismith JH, Barton GJ. (2008) Nucl. Acids Res. 36, W190-196.

69. The Mre11 protein interacts with both Rad50 and the HerA bipolar helicase and is recruited to DNA following gamma irradiation in the archaeon Sulfolobus solfataricus A. Quaiser, F. Constantinesco, M.F. White, P. Forterre & C. Elie (2008) BMC Molecular Biology 9:25 .

68. The archaeal XPB protein is a ssDNA dependent ATPase with a novel partner J.D. Richards, L. Cubeddu, J. Roberts, H. Liu and M.F. White (2008) J. Mol. Biol. 376, 634-644.

67.Structure of the DNA repair helicase Hel308 reveals DNA binding and autoinhibitory domainsJ.D. Richards, K.A. Johnson, H. Liu, A-M McRobbie, S. McMahon, M. Oke, L. Carter, J.H. Naismith and M.F. White (2008) J. Biol. Chem. 283, 5118-5126.


66. The Sulfolobus solfataricus radA paralogue sso0777 is DNA damage inducible and positively regulated by the Sta1 protein M. Abella, S, Rodriquez, S. Paytubi, S. Campoy, M. F. White and J. Barbe (2007) Nucl. Acids Res. 35, 6788-6797.

65. Responses of hyperthermophilic crenarchaea to UV irradiation D. Götz, S. Paytubi, S. Munro, M. Lundgren, R. Bernander and M.F. White (2007) Genome Biology 8:R220, 1-18.

64. Expression, purification, crystallization, data collection and preliminary biochemical characterization of methicillin-resistant Staphylococcus aureus Sar2028, an aspartate/tyrosine/phenylalanine pyridoxal-5′-phosphate-dependent aminotransferase.. J. Seetharamappa et al., (2007) Acta Crystallograph Sect F Struct Biol Cryst Commun. 1;63(Pt 5):452-6.

63. Purification, crystallization and data collection of methicillin-resistant Staphylococcus aureus Sar2676, a pantothenate synthetase. J. Seetharamappa et al., (2007) Acta Crystallograph Sect F Struct Biol Cryst Commun. 1;63:488-91.

62. An acetylase with relaxed specificity catalyses protein N-terminal acetylation in Sulfolobus solfataricus D.T. Mackay, C.H. Botting, G.L. Taylor & M. F. White (2007) Mol. Microbiol. 64, 1540-1548.

61. Equal rates of Repair of DNA photoproducts in transcribed and non-transcribed strands in Sulfolobus solfataricus R. Dorazi, D. Götz, S. Munro, R. Bernander & M. F. White (2007) Mol. Microbiol. 63, 521-529.

60.CC1, a novel crenarchaeal DNA binding protein X. Luo, U. Schwarz-Linek, C. H. Botting, R. Hensel, B. Siebers, M. F. White (2007) J. Bacteriol. 189, 403-409.


59. PCNA activates the Holliday junction resolving enzyme Hjc R. Dorazi, J.L. Parker & M.F. White (2006) J. Mol. Biol. 364. 243-247.

58. Crystallization of Ranasmurfin, a blue-coloured protein from Polypedates leucomystax S.A. McMahon et al., (2006) Acta Crystallograph F Struct Biol Cryst Commun 62, 1124-1126.

57. Structure of the heterotrimeric PCNA from Sulfolobus solfataricus G.J. Williams, K. Johnson, J. Rudolf, S.A. McMahon, L. Carter, M. Oke, H. Liu, G.L. Taylor, M.F. White & J. H. Naismith (2006) Acta Crystallograph F Struct Biol Cryst Commun 62, 944-948.

56. The DNA repair helicases XPD and FancJ have essential iron-sulfur domains J. Rudolf, V. Makrantoni, W. J. Ingledew, M. J. R. Stark and M. F. White (2006) Mol. Cell, 23, 801-808.

55.Overexpression, purification, crystallization and data collection of Sulfolobus solfataricus Sso6206, a novel highly conserved protein A.R. McEwan, H. Liu, M. Oke, L. Carter, H Powers, M. Dorward, S.A. McMahon, M.F. White & J.H. Naismith (2006) Acta Crystallograph F Struct Biol Cryst Commun 62, 228-230.


54. DNA end directed and processive nuclease activities of the archaeal XPF enzyme J. A. Roberts and M. F. White (2005) Nucl. Acids Res. 33, 6662-6670.

53. DNA damage detection by an archaeal single stranded DNA binding protein L. Cubeddu and M. F. White (2005) J. Mol. Biol. 353, 507-516.

52. Archaeal DNA replication and repair Z. Kelman and M. F. White (2005) Current Opinion in Microbiology, 8, 669-676.

51. Obligate heterodimerisation of the archaeal Alba2 protein with Alba1 provides a mechanism for control of DNA packaging C. Jelinska, M.J. Conroy, J.C. Craven, A. Hounslow, P.A. Bullough, J.P. Waltho, G.L. Taylor and M. F. White (2005) Structure, 13, 963-971.

50. The endonuclease Hje catalyses rapid, multiple turnover resolution of Holliday junctions J. L. Parker and M. F. White (2005) Journal of Molecular Biology, 350, 1-6.

49. Crystal structure of a xeroderma pigmentosum group F endonuclease with and without DNA suggests a model for substrate recognition M. Newman, J. Murray-Rust, J. Lally, J. Rudolf, A. Fadden, P. Knowles, M.F. White and N.Q. McDonald (2005) EMBO Journal, 24, 895-905.

48. Conformational flexibility revealed by the crystal structure of a crenarchaeal RadA. A. Ariza, D.J. Richard, M.F. White and C.S. Bond. (2005) Nucleic Acids Res. 33(5) 1465-1473.

47.An archaeal endonuclease displays key properties of both XPF-ERCC1 and Mus81. J. A. Roberts and M. F. White (2005) Journal of Biological Chemistry, 280, 5924-5928.


46. Substrate Recognition and Catalysis by the Holliday Junction Resolving Enzyme Hje. C.L. Middleton, J.L. Parker, D.J. Richard, M. F. White and C.S. Bond (2004) Nucleic Acids Res. 32, 5442-5451.

45.Physical and functional interaction of the archaeal single-stranded DNA binding protein SSB with RNA polymerase D.J. Richard, S.D. Bell and M.F. White (2004) Nucleic Acids Res. 32, 1065-1074.


44. Transcriptional response to DNA damage in the archaeon Sulfolobus solfataricus V. Salerno, A. Napoli, M. F. White, M. Rossi and M. Ciaramella (2003) Nucleic Acids Res. 31, 6127-6138.

43. Archaeal DNA repair: paradigms and puzzles M.F. White (2003) Biochem. Soc. Trans., 31, 690-693.

42. Insights into ssDNA recognition by the OB fold from a structural and thermodynamic study of Sulfolobus solfataricus SSB protein I.D. Kerr, R.I.M. Wadsworth, L. Cubeddu, W. Blankenfeldt, J.H. Naismith and M. F. White (2003) EMBO J., 22 (11), 2561-2570

41. An archaeal XPF repair endonuclease dependent on a heterotrimeric PCNA, J. A. Roberts, S. D. Bell and M. F. White (2003) Molecular Microbiology, 48 (2), 361-371.

40.Crystallisation and preliminary X-ray diffraction studies of Hje, a Holliday junction resolving enzyme from Sulfolobus solfataricus, C. L. Middleton, J. L. Parker, D. J. Richard, M. F. White & C. S. Bond (2003), Acta Crystallogr. D Biol. Crystallogr., 59, 171-173.


39. Holding it together: chromatin in the archaea, M. F. White and S. D. Bell (2002) Trends in Genetics, 18, 621-626.

38. Structure of ALBA: an archaeal chromatin protein modulated by acetylation, B. N. Wardleworth, R. J. M. Russell, S. D. Bell, G. L. Taylor and M. F. White (2002) EMBO J., 21, 4654-4662.

37. Alba, a conserved archaeal chromatin protein, interacts with Sir2 and is regulated by acetylation. S. D. Bell, C.B. Botting, B.N. Wardleworth, S. P. Jackson and M. F. White (2002) Science, 296, 148-151.

36. Recruitment of intron encoded and co-opted proteins in splicing of the bI3 intron RNA, G. S. Bassi, D. M. deOliveira, M. F. White and K. M. Weeks (2002) Proc. Natl. Acad. Sci. USA, 99, 128-133.

35. Mechanistic Implications for Escherichia coli Cofactor-dependent Phosphoglycerate Mutase Based on the High-Resolution Crystal Structure of a Vanadate Complex, C. S. Bond, M. F. White and W. N. Hunter (2002) J. Mol. Biol., 316, 1071-1081.

34.Holliday junction resolution is modulated by archaeal chromatin components in vitro, M. Kvaratskhelia, B. N. Wardleworth, C. S. Bond, J. M. Fogg, D. M. Lilley and M. F. White (2002) J. Biol. Chem., 277, 2992-6.


33. Distortion of DNA junctions imposed by the binding of resolving enzymes: a fluorescence study, J. M. Fogg, M. Kvaratskhelia, M. F. White and D. M. Lilley (2001) J. Mol. Biol., 313, 751-64.

32. The junction-resolving enzymes, D. M. J. Lilley and M. F. White (2001) Nature Reviews Mol. Cell. Biol., 2, 433-443.

31. Preliminary crystallographic studies of the double-stranded DNA-binding protein Sso10b from Sulfolobus solfataricus, B. N. Wardleworth, R. J. Russell, M. F. White & G. L. Taylor, (2001) Acta Crystallogr. D Biol. Crystallogr.,57, 1893-4.

30. Structure of Hjc, a Holliday junction resolvase, from Sulfolobus solfataricus, C. S. Bond, M. Kvaratskhelia, D. Richard, M. F. White and W. N. Hunter (2001) Proc. Natl. Acad. Sci. U S A, 98, 10.

29. A novel member of the bacterial-archaeal regulator family is a nonspecific DNA-binding protein and induces positive supercoiling, A. Napoli, M. Kvaratskelia, M. F. White, M. Rossi & M. Ciaramella (2001) J. Biol. Chem., 276, 10745-52.

28. Overexpression, purification, crystallization and data collection of a single-stranded DNA-binding protein from Sulfolobus solfataricus, I. D. Kerr, R. I. Wadsworth, W. Blankenfeldt, A. G. Staines, M. F. White and J. H. Naismith, (2001) Acta Crystallogr. D Biol. Crystallogr., 57, 1290-2.

27. Identification and properties of the crenarchaeal single-stranded DNA binding protein from Sulfolobus solfataricus, R. I. Wadsworth and M. F. White (2001) Nucleic Acids Res., 29, 914-20.

26. High resolution structure of the phosphohistidine-activated form of Escherichia coli cofactor-dependent phosphoglycerate mutase (2001) C. S. Bond, M. F. White and W. N. Hunter, J. Biol. Chem., 276, 3247-53.

25. Multiple Holliday junction resolving enzyme activities in the Crenarchaeota and Euryarchaeota, M. Kvaratskhelia, B. N. Wardleworth and M. F. White (2001) FEBS Lett., 491, 243-6.


24. Resolving the relationships of resolving enzymes, D. M. J. Lilley and M. F. White (2000) Proc. Natl. Acad. Sci. U S A, 97, 9351-3.

23. Site-directed mutagenesis of the yeast resolving enzyme Cce1 reveals catalytic residues and relationship with the intron-splicing factor Mrs1, B. N. Wardleworth, M. Kvaratskhelia & M. F. White (2000) J. Biol. Chem., 275, 23725-8.

22. Two Holliday junction resolving enzymes in Sulfolobus solfataricus, M. Kvaratskhelia & M. F. White (2000) J. Mol. Biol., 297, 923-32.

21. An archaeal Holliday junction resolving enzyme from Sulfolobus solfataricus exhibits unique properties, M. Kvaratskhelia and M. F. White (2000) J. Mol. Biol., 295, 193-202.

20.A conserved nuclease domain in the archaeal Holliday junction resolving enzyme Hjc, M. Kvaratskhelia, B. N. Wardleworth, D. G. Norman and M. F. White (2000) J. Biol. Chem., 275, 25540-6.


19. The two analogous phosphoglycerate mutases of Escherichia coli, H. I. Fraser, M. Kvaratskhelia and M. F. White (1999) FEBS Lett., 455, 344-8.

18. Sequence and functional-group specificity for cleavage of DNA junctions by RuvC of Escherichia coli, J. M. Fogg, M. J. Schofield, M. F. White and D. M. Lilley, (1999) Biochemistry, 38, 11349-58.

17. Nucleosome mobilization catalysed by the yeast SWI/SNF complex, I. Whitehouse, A. Flaus, B. R. Cairns, M. F. White, J. L. Workman and T. Owen-Hughes (1999) Nature, 400, 784-7.

<span ” class=”Bullet”>16. Quantitation of metal ion and DNA junction binding to the Holliday junction endonuclease Cce1, M. Kvaratskhelia, S. J. George, A. Cooper and M. F. White (1999) Biochemistry, 38, 16613-9.


15. Interaction of the resolving enzyme YDC2 with the four-way DNA junction White, M.F. & Lilley, D.M.J. (1998) Nucleic Acids Res. 26, 5609-5616.

14. Dissection of the sequence specificity of the Holliday junction endonuclease CCE1 Schofield, M.J., Lilley, D.M.J., & White, M.F. (1998) Biochemistry 37, 7733-7740.

13. Characterization of a Holliday junction resolving enzyme from Schizosaccharomyces pombe White, M.F. & Lilley, D.M.J. (1997) Mol. Cell. Biol. 17, 6465-6471.

12. CCE1 opens the structure of the four-way junction White, M.F. & Lilley, D.M.J. (1997) J.Mol.Biol. 266, 122-134.

11. Recognition and manipulation of branched DNA structure by junction-resolving enzymes White, M.F., Giraud-Panis, M-J.E., Pöhler, J.R.G. & Lilley, D.M.J. (1997) J. Mol. Biol. 269, 647-664.

10. A Holliday junction endonuclease from fission yeast White, M.F. & Lilley, D.M.J. (1997) Biochem Soc Trans 25, S645.

9. Sequence specficity of CCE1Schofield, M.J., White, M.F. & Lilley, D.M.J (1997) Biochem Soc Trans 25, S646.

8. The structure-selectivity and sequence-preference of the junction-resolving enzyme CCE1 of Saccharomyces cerevisiae White, M.F. & Lilley, D.M.J (1996) J. Mol. Biol. 257, 330-41.

7. Expression of apple 1-aminocyclopropane-1-carboxylate synthase in Escherichia coli: kinetic characterization of wild-type and active-site mutant forms White, M. F., Vasquez, J.,Yang, S. F. & Kirsch, J. F. (1994) Proc Natl. Acad. Sci USA 91, 12428-32.

6. Crystallization and preliminary X-ray analysis of recombinant 1-aminocyclopropane-1-carboxylate synthase from apple. A key enzyme in the biosynthesis of the plant hormone ethylene Hohenester, E., White, M. F., Kirsch, J. F. & Jansonius, J. N. (1994) J. Mol. Biol. 243, 947-9.

5. Substitution of His-181 by alanine in yeast phosphoglycerate mutase leads to cofactor-induced dissociation of the tetrameric structure White, M. F., Fothergill-Gilmore, L. A., Kelly, S. M. & Price, N. C. (1993) Biochem. J. 291, 479-83.

4. Dissociation of the tetrameric phosphoglycerate mutase from yeast by a mutation in the subunit contact region White, M. F., Fothergill-Gilmore, L. A., Kelly, S. M. & Price, N. C. (1993) Biochem J. 295, 743-8.

3. Development of a mutagenesis, expression and purification system for yeast phosphoglycerate mutase. Investigation of the role of active-site His181 White, M. F. & Fothergill-Gilmore, L. A. (1992) Eur. J. Biochem. 207, 709-14.

2. Mutase versus synthase: the phosphoglycerate mutase family studied by protein engineering White, M. F. & Fothergill-Gilmore, L. A. (1990) Biochem. Soc. Trans. 18, 257.

1. Sequence of the gene encoding phosphoglycerate mutase from Saccharomyces cerevisiae White, M. F. & Fothergill-Gilmore, L. A. (1988) FEBS Lett. 229, 383-7.

Book chapters

5. Archaeal Chromatin Organization S.D. Bell and M.F. White (2010) in: Bacterial Chromatin; Springer, Eds R.T. Dame and C.J. Dorman. ISBN:9789048134724.

4. DNA stability and repair M.F. White & D.W. Grogan (2007) in: Thermophiles: Biology and Technology at High Temperatures; Taylor and Francis books, Eds F. Robb, G. Antrikanikian, A. Driessen & D. Grogan. ISBN:9780849392146.

3. DNA Repair M. F. White (2006) in: Archaea: Evolution, Physiology and Molecular Biology, Blackwell publishing, Eds R. Garrett & H-P Klenk.

2. Recombination Machinery: Holliday junction resolving enzymes. M. F. White (2004) in: The Bacterial Chromosome, ASM Press, Ed N.P. Higgins

1. Metabolic Processes Reddy M.H. & White M.F. (1995) in: Applied Physiology for Surgery and Critical Care, Butterworth Heinemann, Eds M.A. Glasby & C. Huang


Tel. +44-1334-463432
Fax +44-1334-462595
email: [email protected]

Biomedical Sciences Research Complex
University of St Andrews
North Haugh
St Andrews, Fife KY16 9ST